Timber Lakes Water Special Service District
 450 West 910 South Suite 100 — PO BOX 579

Heber City, Utah 84032

2022

Annual Drinking Water Quality \Report Timber Lakes Water SSD

We are pleased to present to you the most recent year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water sources are springs; they are Lone Pine 1,2, 3,4,5, and 6, Cove East and Cove West, and Look Out Mountain. Lone Pine 3, 4, 5, and 6 were turned into the system in 2010.

Timber Lakes Water SSD has a Drinking Water Source Protection Plan that is available for your review. It contains information about source protection zones, potential contamination sources and management strategies to protect our drinking water. It has been determined that we have a low susceptible level to potential sources of contamination, such as septic tanks, roads, homes etc. If you have any questions regarding source protection, contact our office to review our source protection plan. Our sources are in remote locations, and there are no known potential contamination sources in the protection zones, so we consider our sources to have a low susceptibility to potential contamination events.

We are pleased to once again report that our drinking water meets federal and state requirements. We have about 962 customers connected to the water system. When connections are properly installed and maintained, the concerns are minimal. However, unapproved, and improper piping changes or connections can adversely affect not only the availability, but also the quality of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. When a cross connection is allowed to exist at your home, it will affect you and your family first. If you would like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

A Master Plan addresses future water system needed capital improvements, anticipated increased water usage, estimated population growth, and other issues that may influence the water system over the next 10-25 years. In March of 2022, the Division of Drinking Water awarded the District a non-repayable grant for $\$ 40,000$ to be used to update and improve our Master Plan. This plan is now about 80% complete. In August of 2022, the Division of Drinking Water authorized a 40-year loan to the District for $\$ 3,263,000$ at 0% interest, to be used for making capital improvements. The District's Board of Directors is currently waiting for the completion of a water rate study and recommendation from our engineers, Bowen and Collins Engineering, to determine if taking the loan is efficacious for the District.

If you have any questions about this report, please contact Jody Defa at 385-450-0750 or Justin Dietrich 801-495-2224. We want our valued customers to be informed about their water utility. If you want to learn more, our monthly meetings are held on the third Tuesday of each month at 6:00 P.M. in the Wasatch County building at 25 North Main in Heber City, Utah. Until Covid-19 restrictions are lifted, the meeting will be held via Zoom and begins at 5:00 P.M. Monthly meetings are open to the public. Please contact the office at 435-654-0125 to receive an attendance link via Zoom or find out if Covid restrictions are lifted and in person meetings have resumed.

Timber Lakes Water routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January $1^{\text {st }}$ to December $31^{\text {st }}, 2022$. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It is important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we have provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.
ND/Low - High - For water systems that have multiple sources of water, the Utah Division of Drinking Water has given water systems the option of listing the test results of the constituents in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in $\$ 10,000$.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in $\$ 10,000,000$.

Picocuries per liter ($\mathbf{p C i} / L$) - picocuries per liter is a measure of the radioactivity in water.
Millirems per year (mrem/yr) - measure of radiation absorbed by the body.
Million Fibers per Liter (MFL) - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Page 2|8

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Date- Because of required sampling time frames i.e., yearly, 3 years, 4 years and 6 years, sampling dates may seem outdated.

Waivers (W)- Because some chemicals are not used or stored in areas around drinking water sources, some water systems have been given waivers that exempt them from having to take certain chemical samples, these waivers are also tied to Drinking Water Source Protection Plans.

Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination

Microbiological Contaminants

Total Coliform Bacteria	N	0	N/A	0	Presence of coliform bacteria in 5% of monthly samples	2022	Naturally present in the environment
Fecal Coliform \& E. Coli	N	0	N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive	2022	Human and animal fecal waste
Turbidity for Ground Water	N	. 082	NTU	N/A	0.5 in at least 95\% of the samples, never to exceed 5.0	2022	Soil runoff

Inorganic Contaminants

Antimony	N	ND	ppb	6	6	2020	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	N	ND	ppm	0	10	2020	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	N	.044-096	ppm	2	2	2020	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	N	ND	ppb	4	4	2020	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	N	ND	ppb	5	5	2020	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	N	ND	ppb	100	100	2020	Discharge from steel and pulp mills; erosion of natural deposits
Copper a. $\quad 90 \%$ results \# of sites that exceed the AL	N	. 0653	ppm	1.3	AL=1.3	2021	Corrosion of household plumbing systems; erosion of natural deposits

Contaminant	$\begin{gathered} \hline \text { Violation } \\ \mathrm{Y} / \mathrm{N} \end{gathered}$	$\begin{gathered} \text { Level } \\ \text { Detected } \end{gathered}$	$\begin{gathered} \hline \text { Unit } \\ \text { Measurement } \end{gathered}$	MCLG	MCL	Date Sampled	Likely Source of Contamination
Cyanide	N	ND	ppb	200	200	2020	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	N	ND	ppb	4000	4000	2020	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead a. 90% results \# of sites that exceed the $\mathbf{A L}$	N	. 0010	ppb	15	AL=15	2021	Corrosion of household plumbing systems, erosion of natural deposits
Mercury (inorganic)	N	ND	ppb	2	2	2020	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nickel	N	ND	ppb	10000	10000	2020	
Nitrate (as Nitrogen)	N	5	ppm	10	10	2022	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	ND	ppb	50	50	2020	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N	3.6-4.2	ppm	None set by EPA	None set by EPA	2020	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.
Sulfate	N	2	ppm	1000	1000	2020	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved solids)	N	124-160	ppm	2000	2000	2020	Erosion of natural deposits

Radioactive

Contaminants

Alpha Emitters	N	$0-0.4$	$\mathrm{pCi} / 1$	0	15	2020	Erosion of natural deposits
Radium 228	N	$0-.001$	$\mathrm{pCi} / 1$	0	5	2020	Erosion of natural deposits

Disinfection By-

products

Halo acetic Acids	N	9.8	ppb	No goal for total	60	2022	By-product of drinking water disinfection

Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Total Trihalomethanes	N	6.4	ppb	0	80	2022	By-product of drinking water disinfection
Chlorine	N	$.5-1.1$	ppm	4	4	2021	Water additive used to control microbes.

Volatile Organic

 Contaminants| Benzene | N | ND | ppm | 0 | 5 | 2020 | Discharge from chemical plants and other industrial activities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon tetrachloride | N | ND | ppb | 0 | 5 | 2020 | Discharge from chemical plants and other industrial activities |
| Chlorobenzene | N | ND | ppb | 100 | 100 | 2020 | Discharge from chemical and agricultural chemical factories |
| o-Dichlorobenzene | N | ND | ppb | 600 | 600 | 2020 | Discharge from industrial chemical factories |
| 1,2 - Dichloromethane | N | ND | ppb | 0 | 5 | 2020 | Discharge from industrial chemical factories |
| 1,2 - Dichloromethane | N | ND | ppb | 0 | 5 | 2020 | Discharge from industrial chemical factories |
| 1,1-Dichloroethylene | N | ND | ppb | 7 | 7 | 2020 | Discharge from industrial chemical factories |
| cis-1,2-ichloroethylene | N | ND | ppb | 70 | 70 | 2020 | Discharge from industrial chemical
 Factories |
| trans - 1,2-Dichloroethylene | N | ND | ppb | 100 | 100 | 2020 | Discharge from industrial chemical factories |
| Dichloromethane | N | ND | ppb | 0 | 5 | 2020 | Discharge from pharmaceutical and chemical factories |
| 1,2-Dichloropropane | N | ND | ppb | 0 | 5 | 2020 | Discharge from industrial chemical factories |
| Ethylbenzene | N | ND | ppb | 700 | 700 | 2020 | Discharge from petroleum refineries |
| Styrene | N | ND | ppb | 100 | 100 | 2020 | Discharge from rubber and plastic factories; leaching from landfills |
| Tetrachloroethylene | N | ND | ppb | 0 | 5 | 2020 | Discharge from factories and dry cleaners. |
| 1,2,4 -Trichlorobenzene | N | ND | ppb | 70 | 70 | 2020 | Discharge from textilefinishing factories |
| 1,1,1 - Trichloroethane | N | ND | ppb | 200 | 200 | 2020 | Discharge from metal degreasing sites and other factories |
| 1,1,2 -Trichloroethane | N | ND | ppb | 3 | 5 | 2020 | Discharge from industrial chemical factories |
| Trichloroethylene | N | ND | ppb | 0 | 5 | 2020 | Discharge from metal degreasing sites and other factories |

Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Toulene	N	ND	Ppb	1000	1000	2020	Discharge from petroleum factories
Vinyl Chloride	N	ND	ppb	0	2	2020	Leaching from PVC piping; discharge from plastics factories
Xylenes	N	ND	ppb	10000	10000	2020	Discharge from petroleum factories; discharge from chemical factories

In addition to the sampling outlined above, we have also sampled for 31 Synthetic Organic Contaminants, Radiological Contaminants and 1 Unregulated Contaminant including Pesticides. These additional chemicals were not detected.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Timber Lakes Water is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline number below or at http://www.epa.gov/safewater/lead.

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring, or manmade. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects is available by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We ask that all our customers help us protect our water sources, which are the heart of our community, and our way of life.

Jody Defa, Manager
Timber Lakes Water Special Service District

